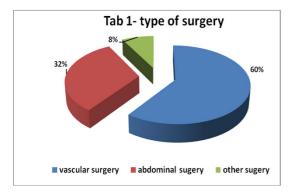
Hemodynamic monitoring with trans-thoracic bioreactance in high risk surgery

Authors : S.Cardellino*, A. Roasio*, L. Carmino*, P. Moretti*, A. Zacco*

*Department of Anesthesia and Intensive care unit, "Cardinal Massaia" Hospital, Asti. Italy.

Introduction: despite recent anesthesiological and surgical progresses, perioperative mortality remains higher than expected (over 10% in high risk surgery) (1). Perioperative hemodynamic optimization significantly improves outcome, preventing hypoperfusion in high risk patients (2). Transthoracic bioreactance (NICOM®) is a recent and less invasive device validate in critical setting (3).


Aim: we value usefulness of cardiac output monitoring and optimization in high risk setting using less invasive tranthoracic bioreactance.

Methods: this is a prospective study. Setting: 11 operating rooms in our hospital (Asti). *Inclusion criteria*: high risk patient is defined according literature (4). Cardiac or respiratory illness with severe functional limitation, aged > 70 years with moderate functional limitation of one or more organ systems, acute massive blood loss (>2.5 l), severe sepsis, shock or severe hypovolemia of any origin, acute gastrointestinal failure (e.g. intra-abdominal compartment syndrome, pancreatitis, perforated viscus, gastrointestinal bleeding), acute renal failure (urea >20 mmol/l, creatinine >260mmol/l), extensive non-cardiac surgery, vascular surgery. *Exclusion criteria:* right ventricular dysfunction or pulmonary hypertension. *Protocol:* transthoracic bioreactance system was placed according figure 1 before induction of anesthesia. During surgery hemodynamic optimization was realized according to measured parameters. *Data collected:* age, sex, ASA, type of surgery, emergency, preoperative cardiac or renal failure, type of anesthesia (general or peripheral); hemodynamic data: heart rate (HR), mean arterial pressure (MAP), stroke volume index (SVI); cardiac index (CI), total peripheral resistance index (TPRI), stroke volume variation (SVV). Data measured before and after induction (T1 e T2), at the end of surgery (T3), at discharged from operating room (T4). End point: proportion of hemodynamic optimization (CI >2,5 l/min/m2) and perioperative "silent" hypoperfusion. Statistic: numerical data presented as mean ± DS or median and range, ordinal data as proportion. T student's test used. P significant if < 0.05.

Fig. 1 – Trans-thoracic bioreactance positioning

Results: 40 consecutive patients, mean age 69 ± 10 y, 65% male, 36% female, ASA 3 (2-4), type of surgery is summarized in table 1. 22% emergency intervention; 40% preoperative cardiac failure, 7,5% renal failure. 93% general and 7% peripheral anesthesia. Despite a not significant post-induction hemodynamic worsening, parameters were maintained constant during surgery in over 70% with an adequate cardiac function monitored during surgery (summarized in tab 2).

Tab 2 – hemodynamic parameters	T1	T2	Т3	T4	Р					
CI (l/min/ m ²)	2,7±0,6	2,5±0,5	2,4±0,6	2,7±0,8	NS					
SVI (ml/min/ m ²)	36±8	33±9	33±9	33±9	NS					
TPRI (dyne/sec/cm ⁻⁵ /m ²)	2677±744	2730±999	2617±1021	2655±938	NS					
SVV (%)	-	14±3	13±3	-	NS					
T1: before induction, T2: after induction, T3 at the end of surgery, T4 before discharge form operative room.										

In over 30% of cases a preoperative hemodynamic hypoperfusion (CI < 2,5 /min/m2) was monitored despite a "silent" clinical picture. Preoperative and intraoperative data are summarized in tab 3 and 4. 3/40 (7,5%) patients died in postoperative period.

Tab. 3 – Preoperative data	Control	"Silent" hypoperfusion	Р		5. 4 –Intraoperative emodynamic data	Control	"Silent" hypoperfusion	Р
N°	27	13			CI (l/min/m ²)	2.7 ± 0.8	2.1 ± 0.5	0.04
Age	70±8	70±11	NS	S	SVI (ml/beat/m²)	38 ± 7	31 ± 8	0.02
Male	17/27 (63%)	9/13 (70%)	NS		SVV (%)	14 ± 3	15 ± 3	NS
ASA	3	3	NS	TPR	RI (dyne/sec/cm ⁻⁵ /m ²)	2870± 947	2790 ± 1125	NS
Emergency	6/27 (22%)	3/13 (22%)	NS		HR (beats/min)	77 ± 4	70 ± 16	NS
Preoperative cardiac failure	10/27 (37%)	7/13 (54%)	< 0.05		MAP (mmHg)	90 ± 26	80 ± 17	NS

Conclusion: perioperative mortality is still higher than expected in particular in high risk surgical patients. The leading cause is a relative and often underestimated tissue hypoperfusion. A recent and less invasive monitoring device using trans-thoracic bioreactance (NICOM®) can be a useful method for hemodynamic management. It can detect, in high risk patients, "silent" hemodynamic failure and improves perioperative hemodynamic optimization

References

1) Pearse R.M., Moreno R.P., Bauer P, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380(9847):1059-65.

 Landoni G, Rodseth RN, Santini F, et al. A. Randomized evidence for reduction of perioperative mortality J Cardiothorac Vasc Anesth. 2012;26(5):764-72.

3) Raval NY, Squara P, Cleman M et al. Multicenter evaluation of non-invasive cardiac output measurement by bioreactance technique. Journal of Clinical Monitoring and Computing Journal of Clinical Monitoring and Computing (DOI: 10.1007/s10877-008-9112-5)

4) Kirov MY, Kuzkov VV, Molnar Z. Perioperative haemodynamic therapy. Curr Opin Crit Care. 2010;16(4):384-92.